Chapter 6.2 Flows in Networks

Original application (product of cold war)

Suppose CCCP and USA start the war. How quickly can CCCP move tank from storage s in Siberia to the target t (battle ground in Europe)? The tanks are moved on a railroad. Every link gives the capacity how many tank a day can be transported.

1: How many tanks per day can be delivered to the battleground? Is the solution unique?

Solution: 50 tanks. The solution is not unique.

Problem: A (directed) graph G, source s, sink t, capacities $u : E(G) \to \mathbb{R}^+$. Network is (G, u, s, t).

Input: Network (G, u, s, t)Output: *s*-*t*-flow of maximum value

s-*t*-flow f is a function $f: E(G) \to \mathbb{R}^+$ such that $f(e) \le u(e)$ for every $e \in E$. Value of f is $\sum_{\overrightarrow{sb} \in E} f(sv) - \sum_{\overrightarrow{vs} \in E} f(vs)$ i.e. leaving – entering to s.

2: How does f look around one vertex of the network? (what axioms must f satisfy?)

Solution: Flow conservation rule: For all $v \in V \setminus \{s, t\}$:

$$\sum_{xv \in E} f(xv) = \sum_{vx \in E} f(xv).$$

and for s, t it satisfies:

$$\sum_{sx\in E} f(sx) - \sum_{xs\in E} f(xs) = \sum_{xt\in E} f(xt) - \sum_{tx\in E} f(tx).$$

3: How do we improve these flows to be maximum? The description on each edge is the value of f, u.

Solution: Path s, v, w, t can be increased by 2. Path s, v, w, x, t can be increased by two.

© () (S) by Bernard Lidický

4: After the improvement, how do you argue that nobody can further improve the flow?

Solution: Consider set $A = \{s, v\}$. The capacity of edges going from A is 4. Hence no flow can route more than 4 through the network.

Let $A \subset V(G)$ be such that $s \in A$ and $t \notin A$. Use $\delta^+(A)$ to denote set of edges \overrightarrow{xy} , where $x \in A$ and $y \notin A$ (edges leaving A). Use $\delta^-(A)$ to denote set of edges \overrightarrow{xy} , where $x \notin A$ and $y \in A$ (edges entering A). Capacity of *s*-*t*-cut A is $\sum_{e \in \delta^+(A)} u(e)$.

5: Prove that for A and any flow f holds

(a) value (f) = $\sum_{e \in \delta^+(A)} f(e) - \sum_{e \in \delta^-(A)} f(e)$ (b) value (f) $\leq \sum_{e \in \delta^+(A)} u(e)$

Solution: (a) Use conservation of flow at vertices in A.

$$\operatorname{value}(f) = \sum_{e \in \delta^+(s)} f(e) - \sum_{e \in \delta^-(s)} f(e)$$
$$= \sum_{v \in A} \left(\sum_{e \in \delta^+(v)} f(e) - \sum_{e \in \delta^-(v)} f(e) \right)$$
$$= \sum_{e \in \delta^+(A)} f(e) - \sum_{e \in \delta^-(A)} f(e)$$

(b) clearly $\sum_{e \in \delta^+(A)} f(e) - \sum_{e \in \delta^-(A)} f(e) \le \sum_{e \in \delta^+(A)} u(e)$ since $f(e) \le u(e)$.

This proves the *obvious* observation that maximum flow cannot exceed capacity of minimum cut.

Notice in 3. we were improving flow be reducing the flow on \overrightarrow{xw} . We "sent flow in the opposite direction". For a digraph G, define \overleftarrow{G} by adding for every edge e also its **reverse** \overleftarrow{e} . For f and u define **residual capacities** $u_f : E(\overleftarrow{G}) \to \mathbb{R}^+$

$$u_f(e) = u(e) - f(e)$$
 $u_f(\overleftarrow{e}) = f(e)$

Residual capacities ... how much extra we can send in each direction.

Residual graph G_f is obtained from \overleftarrow{G} by removing edges $e \in E(\overleftarrow{G})$ with $u_f(e) = 0$. **Augmenting path** is an *s*-*t* path in G_f .

6: Construct the residual graph for

and find an augmenting path and increase the flow using the augmenting path.

Solution:

ⓒ€\$③ by Bernard Lidický

TODO: Too much drawing :-(

7: How do we update (i.e., **augment** the flow f) using an augmenting path in \overleftarrow{G} ?

Solution: If flow is increasing on edge e by γ , then decrease $u_f(e)$ by γ and increase $u_f(\overleftarrow{e})$ by γ .

8: How to create an algorithm?

Solution: Keep finding augmenting paths and using them. The value of the value will be increasing.

Ford-Fulkerson Algorithm

Input: Network (G, u, s, t). Output: an s-t-flow f of maximum value

- 1. f(e) = 0 for all $e \in E(G)$
- 2. while f-augmenting path P in G_f exists:
- 3. compute $\gamma := \min_{e \in E(P)} u_f(e)$
- 4. augment f along P by γ (as much as possible)

9: The algorithm might pick the augmenting path P poorly. At worst, how many iterations might the following network take?

(N is a big integer. Try to trick the algorithm to do many steps by picking unlucky P.)

Solution: Always use the edge uv with capacity 1. The augmentation will be always by one. So 2N iterations. The running time depends on u.

10: Show that s-t-flow f is maximum if and only if there is no f-augmenting path. (That is, Ford-Fulkerson algorithm is correct.)

Solution: If there is an augmenting path, then the flow can increase. If there is no augmenting path, then the set of vertices s reachable from s in the reduced graph G_f form a cut. Recall

$$\operatorname{value}(f) = \sum_{e \in \delta^+(A)} f(e) - \sum_{e \in \delta^-(A)} f(e).$$

Since there is no augmenting path,

$$\sum_{e \in \delta^-(A)} f(e) = 0$$

$$\sum_{e \in \delta^+(A)} f(e) = \sum_{e \in \delta^+(A)} f(e).$$

This proves the maximality of the flow.

The question gives proof to

Theorem (Ford Fulkerson) Maximum value of an *s*-*t*-flow equals minimum capacity of an *s*-*t*-cut.

11: If $c: E \to \mathbb{Z}$, is it true that the flow produced from Ford-Fulekrson is integral and that the algorithm finishes in a finite time?

Solution: Yes, the augmenting is always by an integer. Every augmentation raises the value of the flow by at least one. This gives finiteness.

This proves

Theorem Dantzig Fulkerson: If the capacities are integral, then there exists an integral maximum flow.

12: If capacities are integral, is it true that every maximum flow is integral?

Solution: No - build network that has small cut and 2 paths to/or from it. See the following example with f, u on edges in this order.

